

WATERLOO MICROAPL

Tutorial and Reference Manual

J. C. Wilson

T. A. Wilkinson

Copyright©1981, by J.C. Wilson & T.A. Wilkinson
First Edition
Second Printing

Allrights reserved. No part of this publication may be reproduced or used in any form or by
any means—graphic, electronic, or mechanical, including photocopying, recording, taping
or information storage and retrieval systems—without the written permission of J. C.
Wilson & T. A. Wilkinson.

Disclaimer

Waterloo Computing Systems Limited makes no representation or warranty with respect to
the adequacy of this documentation or the programs which it describes for any particular
purpose or with respect to its adequacy to produce any particular result. In no event shall
Waterloo Computing Systems Limited, its employees, its contractors or the authors of this
documentation be liable for special, direct, indirect or consequential damages, losses, costs,
charges, claims, demands, or claim for lost profits, fees or expenses of any nature or kind.

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing
Systems Limited. From time-to-time enhancements to this system or completely new
systems will become available.

A newsletter is published periodically to inform users of recent developments in
Waterloo software. This publication is the most direct means of communicating
up-to-date information to the various users. Details regarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

PREFACE

APL is a powerful and concise notation which can be used to communicate algorithms
between people or between a person and a computer. The name APL is an acronym for “A
Programming Language,’’ which was the title of a book published in 1962 by the inventor of
APL, Kenneth E. Iverson. Since the late 1960’s the notation itself has remained relatively
unchanged, although features have been added to facilitate its use with the computer.

Waterloo MicroAPL for the SuperPET follows closely the IBM internal standard for
APL written by A. D. Falkoff and D. L. Orth and published in 1979 by the Association for
Computing Machinery. All of the standard language primitives are included. System
features are those consistent with a single user environment. Extensions include system
functions supporting file access, the reading and modification of memory, and the execu-
tion of machine language subroutines.

This manual is presented in two parts. The first part is a tutorial intended to introduce the
new user to the language and system features. The second part is acomprehensive reference
manual. Much of the reference manual should be read or skimmed by the new user,
although Chapter 6, which contains the detailed definitions of all the primitive functions
and operators, should be deferred until needed.

Acknowledgment

Many people have made significant contributions to the design of Waterloo MicroAPL
and so it is difficult to acknowledge everyone individually. The design is based upon ideas
evolved and proven over the past decade in other software projects in which these and other
people have been involved. The major portion of the implementation was performed by
Geno Coschi, Rick Gallant, Eric Mackie, Steve McDowell and Terry Stepien. Kay Harrison
and Paul Dirksen were very helpful in the production of this document.

J. C. Wilson
T. A. Wilkinson,

July, 1981.

Table of Contents
TUTORIAL SECTION

INIrOdCtOno o0t edotiatiancinunnsnsdueshieeessessiadss sl 3
Cletting. StATIEA ;. o vs als ciing s5iee e o w s SAE G o v v e s Ty it s R 3

1. Simple ArithmeticFunctions.cvvirrnirrnnrsnnsnnnnns 5
2, Storing Numbers.oviriririrrrrnrnsrsnensnsnssasenanas 7
3, ListE 0T NUMBIE .. . oa o o ivn vigns i a0 5bogig 80's v A oo od s o 8 isn s 9
4. Manipulating Character Data.cvnvirnnnnirenensnnnnnns 13
S D COMPRTIIOIE . o ix o 600 o s e0 s 560l 0 0bs o' Sus 500 wiuionm 8 o b 6.0 8 da o 16
6. Tablesof Data.cooiiiiiiiiiiiiiiirenrerrenrsensennnannns 18
T IndeXing.ovuiniiiiiiiiii et e et rannaaanan 21
8. Combining Setsof Data.viviriininnnns cienrnnnnnns 24
9. Storing Instructions as Functions.ovieeueninenannnnnns 26
10. Controlling the Sequence of Execution.cccuvvueunnn.. 30
11. External Storageof DataasFiles..............o0viiinneenneennnnns 33

Table of Contents
REFERENCE SECTION

1. Keyboard and SCreen.cocerecususnsraceassstsucannnncess 39

Keyboardcoveveenensnsneesasssssssnassnsssssnsnans 39

“Overstruck’ Characters......oeeeeseesescsssassssassesasss 40

Unused Symbols. . .cvvvverreereeritnnanrsarseeranaanaannes 40

Control Keys. ...cvvsvenennarrarsssessscasassanarsssacanns 41

Full Screen Editing and the RETURNKey.covvvviiinannnns 41

2. The Workspace and System Commands.ooeveevrrnciiineans 42
3. EXPressionS......coceoveressessasasnannsrsssasassansnnsnarsacsns 46
Qe ATTAYS .. ovverransansarsassessassassassassassassassasssssssanes 47
EMPpPLY AITAYS. ...ceeusussrranensssssssnssasesassssssasans 48

Internal Representation: NumericData.ccoviiiannannnss 48

Internal Representation: Character Data.cooevveaannss 48

Numeric Data: Input.coiirueernesesssssssssassssscans 48
Character Data: Input......coeveeeeresssreserencaransannes 49
VArIADIES . v o evverearasssssssasassossssassassssosssnnns 49

5. Defined Functions.ccceeseesesecnnssasssssssssnsssssssns 51
The Header of a Defined Function.ovvvvennenennnnnnns 51
Function Name.....ccveeseesssssssssssssssssasassssssses 51

B L7 S S L LLEE TR REEL 51

P AT AMCICIS . e e v v ssvnanessssssssssnannnssssasssasnsssssans 52

cLOCAl MAMES. « «evvnrnrareessssssasnnssssssassasnsassssnns 52
The Body of a Defined Function.ccvververrecnsanaannes 52
CSLALCIMENLS + « v v v e evvensossssnssnsanscssssnssnsnssnnnnnnns 53
-Branchesand Labels......coovereerasrerastansarancnsnnnns 53
Defining @ FUNCLON. . oovvvrrrenrennarsanasennnsannnscnnans 55

Editing @ FUnction.vveeencerinsnanenrneesasinanans 55
Editing HInts. .. .o vvuiunneriansrerecnatissasnssnaececens 56
Errors During Function Editing.cvvveiannennrnrensacenss 56
Effect of LOcalization.....coveveerascasesssssassssassesanss 57
Executing Defined FUnctions.ccoveeueninnnensacancans 57
Suspension of EXeCution......coveevareenrariasansansnnns 58
StOp COntrol. . .couvaivirrensesnsssusisssnaneasssassssnnas 59
Trace Control.....coveeresensessocssssssssescsssansassass 59

' Table of Contents
S I AICALON. o v s voitns s wihsansssPansvesns sdEaiessassdsas 59
i . Lo Ry .
6. Primitive Functionsand Operators.cccuviveeenncncnennes 61
AR FUBCHONS: . oo c 55t S s sa s dme s nsansp e s s s s s 61
--Monadic Scalar Functions.oovviveneennsrennsnnannnns 61
—-Arithmetic Functions.c.ooevevrereerereerenrnnnnnns 62
I ——-Random Function........ooveviiiinrenesressenesnsanenns 63
=—Logical FunCtion.....cccccceeessacessnsasassssssassacanas 63
--Dyadic Scalar Functions.cceeeeeeeencsscecncaccnes 63
l -—-Arithmetic FUunctions........cvveveveeveernssesnscrananes 63
——-Logical FUNCLiONS. ...vvvveeeerreeenesecnsscnsansscnnnnns 64
-—Relational Functions..........eevvivinierenresnonranenss 64
---Trigonometric FUunctions.ccveveeeenereanencananns 65
-Mixed Functions.....ceeeveeeereereccereerescascanesscnns 65
ODETRIOTE , « Jsvassiors singnmpinsssssniessssnssssessnesis 76
l 7. System Variables and System Functions.ccciiiinennnnns 80
System Variables. . cccoossvvcsssossessossssassssssarsscsnas 80
l System Functions........eeeeeereeecncsscesscssanssssacnns 83
B EaVOTE. .o isaatciesisivassnonsocvesdolionnsnsdessdsnssthieninsss 87
l O Mg . c oo viannvossnilansnesmnse vpve s bigineeak s 87
D FIe .. civoioilfitn s snmen e ohoassns sk em et onesie ek eiins s of 89
l General Concepids....ovicvveilosvosessscnssscvsvosnnsssss 90
B N AMIEE . 5o Fovannevonnsasdisincidnscosssiinsssamaphasss 9
JEPLICR o oov o s 2n 5w o & ww s v v iidn AERRS Guie S w o 9% 90w s wopde oha g 90
General File Manipulation Functions:........ccociiiiinanenans 91
APL Sequentisl Files. ionpierasesnsosas i vashaiasanss e 92
BARE-Sequential Files.......ccoviiieeriiinenenececnanonans 93
I Relative File€i. ciicceoveeriitipiivessnnnsssriidaesdeibesnss 93
Appendix A. Tablesof Functions.coiiiiiniiinnrennennnennns 95
Appendix B. System Commands, Variables and Functions. 102
I Appendix C. Character Code Tables.covveiiieererrerenronnnnas 105

WATERLOO MICROAPL

Tutorial Manual

J. C. Wilson

T. A. Wilkinson

Introduction

This Tutorial is intended to provide an introduction to the basic concepts and facilities of the
APL computer language asimplemented on the Commodore SuperPET. Itis composedofa
number of short topics with accompanying notes which illustrate each point.

Getting Started

Before turning the machine on, make sure the switches are set at 6809 and R/W. Then turn
on the power switch on the SuperPET and disk (and printer if attached). The following
menu should appear.

Waterloo microSystems
Select:

setup
monitor

apl

basic

edit

fortran
pascal
development

Insert the system diskette in drive 1 and a data diskette in drive 0. Then select APL by typ-
ing apl and pressing return.

There will be a pause of about 1 minute while the APL language translator is loaded into
the machine. Then a message similar to the following will appear:

WATERLOO MICROAPL

COPYRIGHT 1981 BY WATERLOO COMPUTING SYSTEMS
LIMITED

CLEAR WS

Now the APL system is ready for use.

Tutorial 1

Simple Arithmetic Functions

The APL system manipulates numbers in the usual manner using the functions of addi-
tion (+), subtraction (=), multiplication (X), division (<) and exponentiation (*). Type
each of the following simple expressions on the keyboard hitting the RETURN key after
each one.

(@) 5+6 (b) 3-1
11 2
(c) 18X3 (d 3+4
54 0.75
(e) 2%3 H 3-4
8 1
(2) 2%.5
1.41421356
NOTES:
1 The symbols + — X =+ and * are called functions. Since each has 2 arguments

(one on the left and the other on the right) they are called dyadic functions.

6 Tutorial 1

2 Theresult of example (f) is a negative number. The symbol for negative (—) should
not be confused with the subtraction symbol (=).

3 Numbers in APL are displayed with 9 digits of accuracy as in example (g).

Consider these examples:

(h) B-4)+1
5
(i) 8—(4+1)
3
G) 8—4+1
3
NOTES:
1 These expressions are more complex, each containing a number of functions and
arguments.
2 Example (h) uses a pair of parentheses to force the subtraction (8 —4) function to

be evaluated before the addition.
a3 Example (i) uses parentheses to force the addition to be evaluated first.

4 Asshownin (j), expressions are evaluated from right to left if no parentheses exist
to indicate otherwise.

5 The numbers used in these examples are referred to in APL as scalars.

Tutorial 2

Storing Numbers

Numbers can be remembered by the APL system through the use of numeric variables
which are defined by the programmer.

(a)

(b)

VISA+79.45

The assignment function (+) is used to save the number 79.45 in the
variable VISA. It may represent an amount owed to a credit company.

The names given to variables can be composed of up to about 80
characters. The first must be a letter of the alphabet, while the remainder
can be any letter or number, or the underscore symbol (__).

VISA
79.45

The contents of a variable can be displayed by typing its name.

8 Tutorial 2
© VISA—50
29.45
MASTER+301.15
VISA+MASTER
380.6

Variables such as VISA and MASTER can be used in expressions.

()] VISATMASTER
301.15

The greater of two numbers can be computed with the dyadic function
maximum (I).

(e) VISALMASTER
79.45

The lesser of the two numbers can be computed with the dyadic
mimimum (L).

Tutorial 3

Lists of Numbers

Many applications require manipulation of lists of numbers. A PL has the ability to store
such lists of numbers in a single variable.

(@)

®)

©

CARDS+79.45 301.45 65 300.2
The above list of 4 numbers is stored (using +) in the variable CARDS.
Such lists are called vectors. This one could represent the various

amounts owed to 4 credit companies.

CARDS
79.45 301.45 300.2

The contents of a vector are displayed by typing its name.

pCARDS
4

The number of elements in or length of a vector can be computed using
the shape function (p).

This is an example of a monadic function since it has only one argument.

10

@

(e)

U}

(8

Tutorial 3

CARDS-20
59.45 281.45 45 280.2

CARDS+2
39.725 150.725 32.5 150.1

The arithmetic functions (+ — X + *) can be used to perform calcula-
tions on all elements of a vector.

+/CARDS
746.1

The sum of the elements in a vector can be computed using the plus reduc-
tion function (+/)

+/CARDSX.18
134.298

Since expressions are evaluated right to left, this multiplies each element
in CARDS by .18 and then totals the elements of the resulting vector.

(+/CARDS)+pCARDS
186.525

This computes the average of the elements in the vector CARDS.

[/CARDS
301.45

The function I/ is used to compute the maximum element in a vector.

L/CARDS
65

Similarly L/ computes the minimum element in a vector.

8
1 23 456 7 8

The monadic index generator function (v) generates a vector of the in-
tegers from 1 to the value of the specified argument.

12

k)

V)

(m)

()

Tutorial 3
JLOAD THISWS
SAVED 81/01/07 00:49:44

This system command is used to restore the workspace to its state at the
time when the)SA VE was done.

)LIB

This system command will display a list of all the workspaces which have
been saved.

)JDROP THISWS

Workspaces can be removed from the library by use of the)DROP com-
mand.

)VARS

This system command will display a list of all the variables defined in this
workspace.

13

Tutorial 4

Manipulating Character Data

As well as performing arithmetic calculations, most computer applications must
manipulate character data such as names, addresses, etc. APL treats such items of data as
arrays of characters.

(a) NAME+«~'SMITH'

The character data enclosed between the quote symbols is assigned to the
character variable NAME.

NAME is a vector of 5 characters.

pNAME
5

The shape function (p) computes the length of a character vector.

14

Tutorial 4

(b) FIRSTNAME+'JACK'
FULLNAME<+«FIRSTNAME,NAME
FULLNAME
JACKSMITH

FULLNAME<«FIRSTNAME," ',NAME
FULLNAME
JACK SMITH

The dyadic catenation function (,) is used to create longer vectors from
two shorter ones.

(c) NAME«~'SMITH'
1TNAME
S
3INAME
SMI
" 3INAME
ITH

The dyadic function take (1) can be used to select a number of elements
from the beginning or end of a vector.

(61FIRSTNAME), NAME
JACK SMITH

The take function can be used to pad blank characters onto a character
vector.

MANIPULATING CHARACTER DATA 15

@

NAMET4]
T

An index or subscript enclosed in square brackets and following the
name of a vector indicates that the element in the specified position is to
be selected from the vector. In this case the 4th character of ‘'SMITH' is
selected.

NAMET[1 3 5]
SIH

If a list or vector of subscripts is specified, the corresponding elements
are all selected to form a new vector.

NAME[1+:3]
MIT

Using vector arithmetic and the index generator function, a substring can
be extracted from a vector.

16

Tutorial 5

Data Comparisons

A very important facility of any computer is the ability to determine the relationships be-
tween various elements of data, both numeric and character. APL uses the functions equals
(=), not equal (#), greater than (>), greater than or equal (=), less than (<), less than or
equal (=), and (A), or (V) and not (~) to perform these comparisons.

Comparison of items in A PL is accomplished by the evaluation of a function which is found
to be either True (represented by 1) or False (represented by 0).

(a) VISA+79.45
VISA=0
0

When the expression VISA=0 is evaluated it is found to be false since
VISA is 79.45. Therefore the expression is given the value 0.

VISA>0
1

(VISA>0)A(VISA <100)
1

These conditions are true and each receives the value 1 indicating truth.

DATA COMPARISONS 17

(®)

©

CARDS+79.45 301.45 65 300.2
CARDS>100
0101

This condition requires that each element of CARDS be compared to
100. The first and third elements are not greater than 100 and so fail the
test. They generate O or false. The second and fourth elements are greater
than 100 and generate 1 or true. Thus a vector is created which indicates
the result of each of the comparisons

+/(CARDS>100)
2

This expression computes how many elements of CARDS are greater
than 100 by creating a vector of 1’s and 0’s and summing.

It is possible to use the vector of 0’s and 1’s produced in this way to select certain elements
from a vector creating a new vector.

@

1 0 1 0/CARDS
79.45 65

The dyadic function compression (/) is used to select specific elements
from the vector CARDS. Compression selects elements from the right-
hand vector which have a corresponding 1 in the left-hand vector.

(CARDS>100)/CARDS
301.45 300.2

The selection vector on the left of a compression function is often
generated by the evaluation of a condition. Here we select all elements of
CARDS which are greater than 100.

(CARDS>100)/1pCARDS
2 4

Here we determine which elements of CARDS are greater than 100 (they
are the second and fourth).

18

Tutorial 6

Tables of Data

Frequently, it is desirable to group items of data together in the form of a table or matrix.
The elements of a matrix are arranged in rows and columns.

(a)

TABLE«<2 3pl 2 3 4 5 6

TABLE
1 2 3
4 5 6
The first line uses the dyadic function shape (p) to create a matrix with 2
rows and 3 columns. The elements of the matrix are filled in from the vec-
tor on the right side. Note the order in which the elements are inserted in-
to the matrix. If there are not sufficient elements in the right hand argu-
ment to fill the matrix, then the elements are re-used as many times as
necessary.

pTABLE
2 3

The monadic function reshape (o) can be used to compute the number of
rows and columns in a matrix. Thisis called the shape of the matrix. Since
this is a 2-dimensional matrix, it is said to have a rank of 2.

TABLES OF DATA 19

Consider a consumer who has 3 credit cards which he uses for 2 different categories of
purchases (say business and personal).

(b)

(c)

CHARGES+2 3pl43 7.9 100.1 17.26 24 40

CHARGES
143 7.9 100.1
17.26 24 40

The first line creates a matrix with 2 rows and 3 columns and assigns 6
values from the 6-element vector on the right.

The second line displays the elements of the matrix.

+/[1JCHARGES
31.56 31.9 140.1

The plus reduction function along dimension [1] (i.e., down the columns)
causes a total to be produced for each column. This creates arow of totals
giving a total for each credit company.

+/[2J]CHARGES
122.3 81.26

Similarly, plus reduction along dimension [2] (i.e., along the rows)
causes a column of totals to be produced, one for each row.

+/+[2]CHARGES
203.56

This computes the sum of the rows and then sums the resulting vector to
give the total of all the numbers in the table.

20 Tutorial 6
(d) PAYMENTS«<2 3p20 10 20 10 20 30

PAYMENTS

20 10 20

10 20 30
CHARGES—PAYMENTS

SRTE 217804

726 4 10

This computes the balance owing in each account.

All the usual arithmetic functions (+ — X = *) apply to
matrices.

+/[1]CHARGES—PAYMENTS
1.56 1.9 90.1

This computes how much we still owe each credit company.

Character data can be arranged in matrices or tables as well. The elements of a character
matrix are single characters.

(e) COMPANY+«3 6p'VISA MASTERAMEX
COMPANY
VISA
MASTER
AMEX

The first line creates a matrix of characters called COMPANY. Each of
the 3 rows in the matrix is composed of 6 characters.

In general, matrices or arrays can have as many dimensions as the application demands.
They can be viewed as tables of tables.

21

Tutorial 7

Indexing

Previous tutorials have discussed vectors and matrices of numbers and characters. It is
sometimes desirable to perform operations on selected elements of these tables. A technique
called indexing or subscripting can be used for this purpose.

(@) DATA+14.2 10 3 41.1 62
DATA
142 10 3 41.1 62

Here we have created a vector of 5 numbers.

DATA|2]
10

DATA[l 3 4]
142 3 41.1

These lines display selected elements from the vector DATA. The
numbers in the square brackets are called subscripts. A subscript canbe a
numeric scalar or vector.

Similar operations are possible with character vectors (see Tutorial 4).

22 Tutorial 7

(b) DATA[3]+1000
DATA
142 10 1000 41.1 62

Any element of a vector can be replaced by using this combination of in-
dexing and assignment.

The various elements of a matrix can also be accessed individually with indexing.

() CHARGES+2 3p14.3 7.9 100.1 17.26 24 40

CHARGES

143 7.9 100.1

17.26 24 40
CHARGES|[2;3]

40
CHARGES[2;3]+0
CHARGES

14.3 7.9 100.1

17.26 24 0

Individual elements of a matrix (created as above) must be referenced by
two indices or subscripts, specifying the row and column of the element
respectively.

In the case of matrices, complete rows or columns can be referenced.

%) CHARGES]1;)

143 7.9 100.1
CHARGES][;3)

100.1 0
CHARGES[;2]+0
CHARGES

143 0 100.1

1726 0 0

Complete rows or columns of a matrix can be extracted or replaced using
subscripts.

INDEXING

(e)

23

COMPANY+3 6p'VISA MASTERAMEX
COMPANY

VISA

MASTER

AMEX

COMPANY13;]
AMEX

COMPANTYT;1]
VMA

COMPANYI[2;]<'MCHG
COMPANY

VISA

MCHG

AMEX

Row and column extraction and replacement can also be done on
character arrays.

Tutorial 8

Combining Sets of Data

In Tutorial 4, the catenation function was introduced as it pertained to character vectors.
However, it has a more general application to vectors of all types.

(a) DATA+<10 13 47
MORE«~6 5 17

LOTS+DATA,MORE
LOTS
10 13 47 6 5 7

The catenation function creates a single vector from two other vectors.

(b) CHARGES+<2 3pl4.3 7.9 100.1 17.26 24 40
CHARGES
14.3 7.9 100.1
17.26 24 40

COMBINING SETS OF DATA 25

©

NEW+CHARGES,[1] 16 18 21

NEW
143 7.9 100.1
17.26 24 40
16 18 21

These lines show how the catenation function is used toadd anewrow to
the matrix ([1] means in the first dimension).

NEW+CHARGES,[2] 16.1 14.7
NEW

143 7.9 100.1 16.1

1726 24 40 147

A new column can be added in a similar manner ([2] means the second
dimension).

CATEGORY+«2 8p'BUSINESSPERSONAL'
CATEGORY

BUSINESS

PERSONAL

CATEGORY,¥ CHARGES
BUSINESS 14.3 7.9 100.1
PERSONAL 17.26 24 40

The thornsymbol (¥) specifies the monadic function format and is form-
ed byoverstriking the symbols T and®. it converts the numericdatain the
matrix CHARGES to character data so catenation can be performed
with the matrix CATEGORY (row by row). The result is a new character
matrix.

CATEGORY,7 2¥CHARGES
BUSINESS 1430 7.90 100.10
PERSONAL 17.26 24.00 40.00

The dyadic function format converts numeric data to character and for-
matsit. Inthis case, each number is converted to 7 characters with 2 digits
after the decimal point.

Tutorial 9

Storing Instructions as Functions

So far we have created various forms of numeric and character data in the workspace.
Each time functions were to be performed on that data, the correct APL statements had to
be entered. It is often desirable to create a list of such statements or instructions in the
workspace. These can then be invoked as a new function, thus avoiding re-entering all the

lines again.

(a)

VSUM

This line opens the definition of a function (or procedure or program)
called SUM. We simply enter the statements we want to put in the func-
tion in response to the line-number prompt by the system editor.

(1]
2]
3]
[4]
(51

VSUM
'ENTER A LIST OF NUMBERS'
X+<0O A GETNO'SFROMKB
‘SUM="%+/X @ DISPLAY SUM OF NO’S

'AVG =" ¥ (+/X)+pX M DISPLAYAVGOFNO’S
v

These lines define the function SUM.

STORING INSTRUCTIONS AS FUNCTIONS 27

Line [2] contains the symbol quad ((J). Later, when this list of instruc-
tions is being executed, it will allow vectors of numbers to be entered
from the keyboard.

Some lines contain the comment symbol () (N overstruck with °). Text
following this symbol provides documentation only.

The del symbol (V) is also used to close the function in line [5].

b SUM
ENTER A LIST OF NUMBERS
0:
1 7 18 4 72
SUM = 28
AVG = 5.6

A function can be executed by simply typing its name.

(©) vsSUMIOlv
[0) SUM
[1) 'ENTER A LIST OF NUMBERS'
[2] X<0O P GETNO’SFROMKB
[31 'SUM = "F+/X M DISPLAY SUM OFNO’S
[4] 'AVG = "F(+/X)+ @ DISPLAY AVG OFNO’S
pX

Example of listing a function.

In order to modify the statements of a function definition, it is necessary to open the func-
tion. Then changes can be made and the function closed.

@

Tutorial 9

vSUMIO)

This lists the function and leaves it open (i.e., the prompt for a new line
[5] is displayed). Lines can now be added, inserted, modified or deleted.
The cursor movement and the INST and DEL keys can be used to change
existing lines. When all desired changes are made, the V symbol is used to
close the function.

The following are some examples of function editing:

©)

®

[41 'AVERAGE="¥(+/X)+ @ DISPLAYAVGOFNO’S
pX
[51 v

Example of replacing a line in a function.
[2.11 'THEREARE',(¥pX),' ELEMENTS'
[22] Vv

Example of inserting a line in a function.
(23]
[v

Example of deleting a line from a function.

)FNS

This system command displays a list of all the functions which are defin-
ed in the current workspace.

VFA
[11 'ENTER A WORD'
[21 WORD<[O
[3] ‘THE WORD HAS'(¥pWORD),” CHARACTERS'
[v

This function illustrates how the input operation is used for character
vectors. The symbol used for character input is quote quad (J) and is
formed by overstriking the symbols * and (1.

STORING INSTRUCTIONS AS FUNCTIONS 29

® VFB WORD
(1] N<+/'A"=WORD
[2] ‘THELETTER A OCCURS',(¥N),’ TIMES'
B] v

In this example, the word to be examined is passed as a parameter to the
function FBrather than being entered asinput (as in (f)). It would be used
as follows:

FB'ACTUAL'
THE LETTER A OCCURS 2 TIMES

))ERASE FB

The system command)ERASE is used to erase a function or a variable
from the workspace.

30

Tutorial 10

Controlling the Sequence of Execution

Functions are frequently very complex combinations of APL statements. It is usually
necessary to control the order of execution in these functions, repeating some statements a
number of times (loop structures) and selectively executing others (if structures). This
logical complexity is achieved in APL through the use of branching statements.

(@) VCALC
[1] 'ENTER SOME NUMBERS'
[2] DATA«O
[3] TOTAL<+/DATA
[4] IF:~(TOTAL=<100)/ENDIF
[S] ‘TOTAL GREATER THAN 100’
[6] ENDIF:
[7] 'TOTAL=',§TOTAL
8] v

The function CALC computes and displays the total of a list of numbers.
If that total is greater than 100, it also prints a message to that effect.

Line [4] causes a branch to the line labelled ENDIF ([6]) when the condi-
tion TOTAL < 100is found to be true. The symbol = indicates a possible

branch.

CONTROLLING THE SEQUENCE OF EXECUTION 31

)

The IF: inline [4] and the ENDIF: in line [6] are called labels and must
be unique within the function. They are followed by the colon (:). Rules
for forming label names are the same as those for forming variable names
(see Tutorial 2).

Itis considered good practice to indent statements (such as line [5]) which
are conditionally executed.

vCOMP
[1] 'ENTER SOME NUMBERS'

[2] DATA«DO

[3] TOTAL«+/DATA

[4] IF:~(TOTAL=<100)/ELSE

(5] 'TOTAL GREATER THAN 100’

6] —ENDIF

(7] ELSE:

8] ‘TOTAL NOT GREATER THAN 100’
[9] ENDIF:

[10] ‘TOTAL=",¥TOTAL

[y v

In this example, lines [5] and [6] are executed if TOTAL > 100 and lines
[7] and [8] are executed if TOTAL <100.

The = ENDIF in line [6] causes an unconditional branch to line [9].

It is important to note that, while the APL language does not have the
structured language constructs, good program structure can be achieved
and revealed using controlled branching, well chosen labels and proper
indenting.

32 Tutorial 10

© VADDER
[1] RPT:
2] 'ENTER SOME NUMBERS'
31 DATA<O
[4] TOTAL+~+/DATA
[S] —(TOTAL<0)/END
[6] 'SUMOF,(¥DATA),'IS',(F¥TOTAL)
(7] —RPT
(8] END:
9 v

The function ADDER repeatedly asks for a list of numbers for which it
displays a total. This is done with a loop composed of lines [1] through

[71.

Line [5] causes the loop to terminate when the calculated total is less than
Zero.

@ VTRANSLATE
[1) 'ENTER A NUMBER'
21 1<0
[3] CASE:~»(I=1 2 3)/CS1,CS2,CS3
[41 'NUMBER NOT IDENTIFIED'
[S] —END
6] Csi:
(7] 'NUMBER IS ONE'
8]l —END
[9] cs2:
[10] 'NUMBER IS TWO'
[11] —-END
[12] Cs3:
[13] 'NUMBER IS THREE'
[14] END:
[15] v

Line [3] in this function performs a case test and selectively executes a
group of statements based on the value of 1. If I=1 control transfers to
label CS1; if I=2 control transfers to label CS2; etc. If the number
entered is not 1 or 2 or 3, control passes to line [4].

33

Tutorial 11

External Storage of Data as Files

It is often desirable to transfer data between an APL workspace and external storage
areas known as files. The simplest form of such a file can be viewed as a list of items of data.
This is called a sequential file and is stored in the APL library and given a name.

(a) 'TEST" OCREATE 6

A file named TEST is created and given the tie-number 6.

CHARGES+2 3pl143 7.9 100.1 17.26 24 40
CHARGES OOWRITE 6

The shape, rank, type and all the data of the variable CHARGES are
transferred to the file tied by number 6.

COMPANY+3 6p'VISA MASTERAMEX
COMPANY OWRITE 6

As before, all characteristics of COMPANY are written to the file.

34

(b)

(©)

Tutorial 11

OUNTIE 6
The file tied by number 6 is released.
'TEST OTIE 4
The file named TEST is tied to the workspace with the number 4.
X+OREAD4
X

143 7.9 100.1
17.26 24 1 40

The variable X receives the shape, rank, type and all the data from the
value stored in the file.

X+<OREAD 4
X

VISA

MASTER

AMEX

Here the variable X receives all the characteristics of the next value stored
in the file.

OUNTIE 4
The file tied by number 4 is released.

'TEST OTIE4
'TEST [JERASE 4

Files can be removed from the library with the function JERASE. The
file being erased must be currently tied to the workspace.

EXTERNAL STORAGE OF DATA AS FILES 35

@

(e)

VCRTFILE A
[1] ST+~ACCREATE3
[2] 'ENTER LINES (EOF TO STOP)'
[3] RPT:
4] X0
[S] =(A/'EOF =31X)/END
6] ST<XOWRITE3
[l =RPT
[8] END:
[9) OUNTIE3
[10v

The above function creates a sequential file of character vectors entered
from the keyboard. Line [1] creates the file using JCREATE and gives it

‘the name specified by parameter A. It also states that this file will be

referred to as file number 3.

Items from X are written to the file in line [6] using O WRITE with ST
receiving a string indicating the success or failure of the operation.

When the entire file has been written, line [9] releases the file with
COUNTIE and the file number becomes available for other uses.

VLISTFILE A
[1] ST«AOTIE3
[21 —(0#0ST)/0
[3] RPT:
[4] X+<[OREAD3
[5] =+ (0#p0STATUS 3)/END
[6] O«X
7] =RPT
[8] END:
[91 CUNTIE3
[10]v

This function retrieves the list of items from the file whose name is in A
and displays them on the screen. Line [1] attaches the specified file using
[TIE and states that it will be referred to as file number 3.

Line [2] causes a transfer to line [0] (i.e., exit from the function) if an er-
ror occurs while attaching the file.

36

Tutorial 11

Line [4] uses OREADto retrieve one item from the file and assign it to X
After this operation, the function OSTATUS (in line [5]) is used to check
the result of the OREAD. When all the items have been retrieved,
OUNTIE is used in line [9] to release the file.

WATERLOO MICROAPL

Reference Manual

J. C. Wilson

T. A. Wilkinson

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing Systems
Limited. From time to time enhancements to this system or completely new systems will
become available.

A newsletter is published periodically to inform users of recent developments in Waterloo
software. This publication is the most direct means of communicating up-to-date informa-
tion to the various users. Details regarding subscriptions to this newsletter may be obtained
by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

39

Chapter 1

Keyboard and Screen

Keyboard

Although the APL keyboard is similar in many ways to the standard keyboard, there are
some major differences.

DA S (A = = >l ek v ANl =T + $
1 2 3 4 5 6 T 8 9 0 + 1 x]90
?) € o ~ 1 ! IIO * TR
olwlE]|R|T]|]Y|U]T]O]|P] <]+
ad T LETEZFeEAadT T'alels 1)
AlSsS D V'R YOGFEE VT I KL [] {

C7. 2.1 N U R FaR] ; \

Z8 X4 C | S B | NEEM L /

40 Chapter 1
The capital letters A-Z are in their usual positions, but you do not press SHIFT to get
them. There are no lower case letters in the APL character set.
Many of the remaining characters are peculiar to APL and will be explained later.
"Overstruck’’ Characters
Besides the symbols shown on the keyboard diagram there are 18 other symbols that can be
created by typing two symbols on top of each other (e.g., by using the “cursor back’’ key).
The 18 overstruck symbols and the two symbols which produce each of them are shown in

the figure below.

Overstruck Symbol Combine

k4 V =~
A A ~
v Vel
b s |
o o |
(=] 0 -
Q o N
® o *
¥ vV =~
4 ! o
¥ T i
S A
+ 7 e
(] R 1 |
| a y
B8 o <+
é 5 2
I T 1

Unused Symbols

Some of the symbolsinthe A PL character set have no use in MicroAPL except as convenient
graphic symbols. These are

diamond $ C
left bra. 2 D n
right brace U a
left tack W e
right tack I v

42

Chapter 2

The Workspace and System Commands

The active workspace is the environment within which you deal with APL. The principal
contents of a workspace are variables and defined functions. When you begin an APL ses-
sion the active workspace is empty; the message CLEAR WS confirms this.

There are a number of system commands which permit you to manipulate workspaces.
System commands are distinguished by the fact that they all start with a right parenthesis.

)LIB
JLIB libid

The response is a listing of the directory for the diskette in drive 0 of the disk unit, or else for
the device designated by libid (see the System Overview Manual). For example, if you havea
disk unit whose address is 9, not the usual 8, then)L/B DISK9/1 will give you the directory
for the diskette in drive 1 of that unit. A lengthy listing can be interrupted by means of the
STOP key.

JCLEAR

The active workspace is replaced by one without any defined functions or variables and with
the workspace parameters ((J/O, JOCT, OPP, OPW, ORL, CJLX) set to their default
values. The name of the workspace is set to null and is reported as CLEAR WS. The
previously active workspace is gone.

THE WORKSPACE AND SYSTEM COMMANDS 43

YWSID
The response is the name of the active workspace.
YWSID wsid

The name of the active workspace is changed to wsid. The response is its previous name. The
parameter wsid is often just a name, like CHESS, but it can designate a device as well (e.g.,
DISK/1.CHESS). See the System Overview Manual.

)SAVE
The active workspace is saved under its current name (unless the name is null).
)SAVE wsid

The active workspace is saved under the name wsid unless wsid doesn’t match the current
name and there already exists a workspace with the name wsid. (This is to prevent you from
inadvertently overwriting one workspace with another.) After the SAVE, the active
workspace will have the name wsid, whether it did before or not.

The response to a SAVE is a timestamp derived from the current setting of the system clock
(see [1T'S) together with the name under which the workspace was saved. The timestamp is
saved with the workspace and is reported on subsequent loading.

YLOAD wsid

The named workspace replaces the active workspace. The active workspace is gone. The
response is the timestamp saved with the workspace.

JCOPY wsid
JCOPY wsid names

The named objects (functions and variables) are copied from the named workspace into the
active workspace, replacing any objects therein having the same names. The parameter
names is a string of names separated by blanks. If it is omitted, all the variables and func-
tions (except objects beginning with [J) are copied.

)DROP wsid

The designated workspace is deleted from the library.

44 Chapter 2

)FNS
The response is a list of the names of the defined functions in the active workspace.
YVARS

The response is a list of the names of the variables currently defined in the active workspace.
(Includes local variables if there are suspended functions.)

)JERASE names

Names is a string containing the names of variables and functions separated by blanks. The
named objects are deleted from the active workspace. Response: normally none, but objects
which could not be erased are reported.

)SI

The response is the current state indicator (see Defined function execution).

)SINL

The response is as for)SI but with the local variables shown against each active function.
JOFF

APL is discontinued and control is returned to the microlanguage menu.

)SYMBOLS

The response is the current maximum number of symbol table entries.

)SYMBOLS number

This has the same effect as)CLEAR except that the maximum number of symbol table en-
tries is set to number.

THE WORKSPACE AND SYSTEM COMMANDS 45

YWSLIMIT

The response is the first memory address beyond the current end of the workspace.
YWSLIMIT number

The end of the workspace is changed to (number-1).

NOTE:

1 Program function key 3 (i.e., shifted ’3'* on the numeric keypad) is equivalent to
typing the three system commands)FNS,)VARS and)SI.

Chapter 3

Expressions

An expression is a string of APL variables, functions, operators, numeric and character
constants, parentheses and bracketed index expressions.

As a general rule, an APL expression is evaluated from right to left, in the absence of
parentheses. Although at first this sounds peculiar it is in fact what we are used to when we
use the English language. For example, the sentence ‘“The equivalent resistance is the
reciprocal of the sum of the reciprocals of the given resistances.”” makes sense (to an elec-
trical engineer!) when read from left to right, but as a prescription for computation it must
be used from right to left, starting with ‘‘the given resistances’’ and ending with the
specification of ‘‘the equivalent resistance.”’

The equivalent APL expression is M«—=+/+R . It, too, can be read from left to
right, but is executed from right to left.

Parentheses modify the order of execution in the usual way.

There are no priority rules such as the common convention that ““multiplication and divi-
sion are done before addition and subtraction.’”” For example 3X4+5 is 27, not 17. This
makes life much simpler in an environment such as APL, in which there are dozens of func-
tions like X,+,+ and —.

Subexpressions containing operators, like +.X are exceptions to the above.

47

Chapter 4

Arrays

Datain APL is not in general single quantities, but rectangular arrays of quantities. A table,
or matrix, like
2734
50 6.7
is arectangular 2 by 3 array of numbers. We say that its type is numeric, its rank is 2 and its
shapeis2 3.

In general, an APL array has, besides its elements, a type (numeric or character), a rank
(the number of axes, or ‘‘coordinates,”” or ‘‘dimensions’’), and a shape (a vector giving the
length of each axis).

A simpler array than a matrix is a list, or vector, like

7 2 35

whose rank is 1 and whose shape is 4.

There is an even simpler array than a vector. This is a single quantity, or scalar, like 3.14
whose rank is 0 and whose shape is empty.

48 Chapter 4

Empty arrays

Itis possible in APL to create an empty array, that is one having no elements at all. The rank
and shape of an empty array are not restricted except that the shape vector contains at least
one element which is zero.

In general, the number of elements in an array is the product of the elements in its shape
vector.

Internal Representation: Numeric Data
The elements of a numeric array are stored internally in a 5 byte floating point format. Thus
the 2 by 3 matrix used in the above example requires 6X5 = 30 bytes of memory, plus the
memory necessary for the shape vector, the rank and the type, plus some further overhead.
MicroAPL does not take advantage of the compression which is possible when numeric

arrays are known to be boolean or integer.
Internal Representation: Character Data
The elements of character arrays are stored one per byte, plus the same overhead as for
numeric arrays. Thus the 3 by 5 matrix

ABCDE

FGHIJ

KLMNO

requires 15 bytes plus overhead.

All 256 possible bytes are legal as the elements of character arrays.

Numeric data: Input

Numeric data elements are entered through the keyboard using the digits 0-9 and the sym-
bols Il'll’ "= "' md & E ’l‘

The digits 0-9 and the decimal point are used in the normal way.

The negative sign — (which is located above the ‘‘2”* on the keyboard, not above the
““+"")and the ““ E’’ (which means ‘‘times ten to the power. . .’’) aresymbols similar to the
decimal pointin that they are regarded as being part of the representation of the number and
not functions or operators.

ARRAYS 49

Examples:
T 2.35E2 is equivalent to — 235
3.14E" 3 is equivalent to 0.00314

There must not be spaces within the representation of a number, and if E occurs, the
number following it must be an integer.

A numeric vector may be entered by typing a sequence of numeric elements separated by
spaces, all on a single line. Larger vectors, and arrays of higher rank, must be formed from
smaller ones by applying APL functions to them.

Character Data: Input

Character data elements which correspond to APL symbols can be entered through the
keyboard.

A character vector may be entered as a string of APL symbols without unintended spaces
(space is an APL symbol), all on a single line.

When a character vector is included as a character constant in an expression it must be
enclosed in quotes, and any quote symbol which the vector itself contains must be made into
two consecutive quote symbols. Thus the contraction of CANNOT would be input by
means of the string ‘CAN’ *T”. The length of the resulting vector is 5 and it contains one
quote symbol.

Fewer than half of all the possible byte values are interpreted internally as A PL symbols.
An application requiring the manipulation of bytes in general will usually create the
character arrays by indexing CJAV, not by getting them through the keyboard.

Again, larger vectors, and arrays of higher rank, must be formed from smaller ones by ap-
plying APL functions to them.
Variables
Every variable has a name which is a string of letters, digits and the underscore character

(—). The first character of a name must be a letter. Names should be limited to 80
characters.

50 Chapter 4
A variable generally acquires a value (which is an array) by having one assigned or
specified. Thus

TAX_RATE+~ 214

assigns the scalar value 27.4 to the variable called TAX_RATE.

There may be several assignments within a single APL expression. For example
A+ 14+ B+0issometimes used toinitialize A to 1 and Bto 0. This tends to reduce readability
and should usually be avoided.

51

Chapter 5

Defined Functions

The defined function in APL is similar to a "program’’ in other languages, and in fact we
will often use the term “‘program’’ interchangeably with "“defined function.”

A workspace may contain a large number of defined functions and they need not bear any
particular relation to each other.

A defined function has amultiline representation. The first line, or header, establishes the
name and syntax of the function, the names used for the parameters and the local names.
The subsequent lines, or body, are the statements to be executed when the function itself is

executed.

The Header of a Defined Function.

-Function name
The names of defined functions are subject to the same rules as the names of variables.
--Syntax

The syntax of a function describes how the function name may appear in an expression.

54 Chapter 5

The next statement to be executed after a branch statement is determined as follows:

(a) If the branch statement has no expression then execution ceases, the cur-
rent execution sequence is cleared off the execution stack and A PL awaits your
next request.

This statement is normally used manually to clear out the execution stack and
get rid of local variables, but it can also be written into functions and used to
abandon automatically the execution of a program when a fatal error is
discovered.

(b) If the branch statement has no expression then the value of the expression
must be either (1) an integer scalar, or (2) a vector whose first element is an in-
teger, or (3) an empty vector.

In the first two cases the integer referred to is the number of the next statement
to be executed. If the integer is not a valid statement number then execution of
the function terminates and control returns to whatever caused execution to
start. In particular, 0 is not a valid statement number and is often used to cause
termination of the function.

In the third case, the empty vector, no branch occurs: the next statement to be
executed is the one following the branch statement in normal sequence.

A very common form for a *“conditional branch’’ is exemplified by
—+(I=N)/INVERT

which can be read as ‘if /< N'then go to INVERT". INVERT is assumed to be
the label on some statement in the function.

A ""case’’ construction can be obtained by

—=(I=1 2 3)/CASE1,CASE2,CASE3
or by

=+((XN)=""1 0 1)/NEGATIVE,ZERO,POSITIVE
where as before the names to the right of the compression (/) symbol are
assumed to be labels.

The branch statement is extremely powerful and must be used with restraint, or you will
create programs which are very difficult to understand.

DEFINED FUNCTIONS 55

Defining a Function
A function can be defined or established in a workspace in one of three ways.
(1) Itcan becopied from a stored workspace using the COPY system com-
mand.
(2) It can be established by means of the system function CJFX.
(3) It can be established by the use of the “’del’” function editor.
The first two features are described elsewhere.
To use the ""del” editor to define a function, enter function definition mode by typing the
character del (V) followed by the header of the function. The editor will prompt with a line

number in brackets. Enter the statements of the body of the function one by one.

To leave function definition mode, end aline, other than one containing acomment, with
adel (V), or enter del in response to the line number prompt.

Editing a Function

To use the editor to revise the definition of an existing function, enter V followed by the
name of the function. You cannot redefine the header this way: the name only is acceptable.

The name of the function may optionally be followed immediately by an editing com-
mand. Once you are back in function definition mode, every line you enter must be an
editing command.

Following is a list of the possible editing commands.

Editing command Meaning

(0] Display the existing definition.

[On] Display the function, starting at line n.

[n(J] Display line n only and leave the cursor on the line.

[n] text Replace the contents of line n by text. (Note that no change will

occur if text is blank. This is a safety measure.) The number n need
not be an integer: if n falls between two existing lines, then the new
line is inserted between those lines.

[An] Delete line(s) n (n may be a vector).

58 Chapter 5

Suspension of Execution

The execution of a defined function will stop prematurely if an error is encountered, if the
STOP key is pressed, or through stop control (see below). The system returns to immediate
execution mode.

The function whose execution was interrupted is said to be suspended and all those func-
tions which led to its execution and are not yet completed are referred to as pendent. A
dyadic function whose left argument is being evaluated is said to be waiting.

The suspended function can be restarted by entering a branch statement. In the case of
stop control, no part of the line has been executed and the function can be safely restarted
with a branch to the line number in question. In the other two cases the point of interruption
is indicated approximately by a caret (A). Whether the function can be restarted (even after
the error, if any, has been fixed up) normally requires some analysis.

A convenient way to restart a suspended function is to enter =[]LCsince [JLCis a vector
whose first element is the line number at which execution is to be resumed.

Inthe suspended state, most normal activities are possible, including the evaluation of ex-
pressions and the execution of functions, but there are some limitations.

1. All names have their local significance (that is, the significance they
had in the suspended function).

2. Space may be limited by the inclusion in the workspace of the local
variables of the suspended and pendent functions.

3. Pendent functions cannot be edited.

4, The header of a function which is suspended or waiting cannot be
edited.

5. Functions which are suspended, pendent or waiting cannot be erased.

6. The workspace can be saved in this condition but it may not be subse-

quently loadable by any different release of the MicroAPL system.

NOTE: There may be ways, not prohibited by these limitations, to create an inconsistent
workspace by manipulating halted functions.

DEFINED FUNCTIONS 59

In general it is best to ““punt’’ (see below) after suspension of function execution unless
you have a good reason not to. One good reason not to is if you are not sure what caused the
error and wish to investigate further by listing variables or executing subexpressions of the
oneinerror. Itis sometimes useful in this case to save a copy of the workspace in its suspend-
ed state (under a ""temporary’’ name!) before doing anything that might make the trail hard
to follow.

Stop Control

By the use of the system function CJSTOP (see ""System Functions’’) a function can be
caused to stop in a suspended state just before executing a given line or lines. The function
may be normally restarted safelv by branching to the line number of the stop.

Trace Control

Actraceof a function line is a display generated on the screenimmediately after the execution
of the line. The system function JTRACE is used to determine which lines are to be traced
(see ’System Functions'’). Execution of the function is not halted. The display generated by
atrace consists of a TRACE SET message, the line number and the value, if any, of the ex-
pression in the statement.

State Indicator

The system command)S/ causes the state indicator to be displayed. The state indicator
shows all the suspended (marked with an asterisk) and pendent functions. (It does not show
the waiting functions.) The order of the display is the same as for (JLC, that is, most recent
first.

For example:
)SI
HI3] *
G[7]
F2] *
OoLc
372

It is good practice to display the state indicator periodically to see that it is clear, and it is
especially inportant when something mysterious seems to have happened: a function has
disappeared, for instance, or an unusual WS FULL occurs.

60 Chapter 5

*"Punt”’

The statement — is sometimes called a’punt’’ (the football term). It may be used as a line of
adefined function, as the response to a (J input request, or inimmediate execution mode. Its
effect in each case is the same: the currently executing function, or the latest suspended func-
tion, is terminated, together with all the pendent functions which led to its execution.

The state indicator may always be cleared by executing punt sufficiently many times.

61

Chapter 6

Primitive Functions and Operations

The term ""primitive’’ refers to things that are available as part of the system without the
necessity of defining them.

The primitive functions and operations all have APL symbols reserved for them. Almost
half of the symbols used for primitive functions actually represent two functions, one
monadic and the other dyadic. Which is intended in a given expression must be determined
from the context: the dyadic function is denoted if possible, i.e., if there is a left argument.

NOTE: The symbol «— used in the following is not APL notation. It means "is
equivalent to.”"

-Scalar Functions

Scalar functions are functions defined on scalar arguments, yielding a scalar as a result, and
which are extended to array arguments element by element.

--Monadic Scalar Functions
The monadic scalar functions are shown in Table A.1.

Each of these functions has the same syntax as the familiar "'negative’” function.

62

Chapter 6

Each takes only numeric arguments. Each can be applied element by element to an array
argument, yielding an array of the same shape.

---Arithmetic Functions

R~+B

R+~-B

R+ XB

R+~=B

R+LB

R+IB

R+~*B

R+@B

R+|B

R<iéB

R+<OB

(Conjugate orindentity) The result is the same as theargument. +B «+— 0+B
—~—= B

(Negative) =B <= 0—B

(Signum) XBis— 1,00r 1 according to whether Bis negative, zero or positive.
XB «=— (B>0)—(B<0)

(Reciprocal) =B «<— 1<+B. B must not be zero.
(Floor) LB is the greatest integer not greater than B. This result is modified in
accordance with the system’s comparison tolerance parameter. For example,
if the comparison tolerance has its default value of about 1E~ 8 then
17.99999999 «— 8. Formally, floor has the following definition.
VR«FL X ; N

[1] N—(XX)X10.5+|X

[2) R~N—-(N-X)>0OCTXIT|N

\'

(Ceiling) TB is the least integer not less than B. Again the result is modified in
accordance with comparison tolerance. [B «~— —L—B

(Exponential) * Bis e raised to the B’ th power, where ¢ is the base of natural
logarithms (approximately 2.71828).

(Natural Logarithm) The inverse of the exponential function. ® *B «~— B
«— * @B. Bmust be greater than zero.

(Magnitude) The absolute value of B. |B «— BI(—B).

(Factorial) § B« — BX(B—1)X(B—2)X...X2X1and 0§ «— 1. Bmustbea
non-negative integer.

(Pi times) Pi times B where Pi is approximately 3.14159.

64 Chapter 6

R+A*B (Power) A raised to the power B. A * B is not defined if A=0 and B<O0 or if
A<O0and Bis not an integer. 0% 0+——1

R+A®B (Logarithms) A®B is the base A4 logarithm of B i.e., the power to which 4
must be raised to give B. A ®B+——(®B)+(®A). A and B must be positive,
and if A=1 then B=1.

R+<A|B (Residue) A|B is the remainder when B is divided by A. 0|B «~— B. If A#0
then R +— B—AXLB+A. R will always lie between 0 (inclusive) and A (ex-
clusive) regardless of whether A is positive or negative.

R+A&B (Binomial coefficient) This is often read ‘A out of B'. One interpretation of it
is the number of combinations of B things taken A4 at a time. A must be anon-
negative integer. B may be any number.

AéB——1 ifA=0
BX(B—1)X...X(B+1—-A)+(§ A) ifA>0

---Logical Functions

R<AAB (And)

R+AvVB (Or)

R<~AAB (Nand)

R+<A~B (Nor)

In each case A and B must be 0 or 1. (See Table A.2)

---Relational Functions

R—A<B (Less)

R<A=<B (Lessorequal)

R+A=B (Equal)

R+~A=B (Greater or equal)

R+<A>B (Greater)

R+A+#B (Notequal)

In each case R is 1 if the relation holds, 0 if it does not. A and/or B can be of
type character only in the case of = and #.

The relational functions on numeric arguments are all subject to comparison
tolerance. A is considered ("‘tolerantly’’) equal to B if and only if (|JA—B) <
(Comparison tolerance) X(|A4)((|B).

The other five relational functions then use this version of equality in their
definitions.

PRIMITIVE FUNCTIONS AND OPERATIONS 65

The comparison tolerance may be changed from its default value of about
1E™ 8 by means of the system variable (JCT.

The effect of comparison tolerance is to make 9=(3 *2) «— 1 for example
even though (3%2)—9 «— 3.725E" (09

~—Trigonometric Functions

R+AOB

This is a family of related functions. The integer A4 selects the family member.
See Table A.2 for details.

-Mixed Functions

The real power (and uniqueness) of APL is contained in the mixed primitive functions. The
mixed functions deal with, and are defined on, arrays as a whole and not element by ele-
ment. Their results have shapes which often differ from the shapes of their arguments. The
mixed functions are not generally arithmetic in nature.

‘The mixed functions are shown in Table A.4.

R+pB

R«,B

R+ApB

R<0B
R~©B
R<0[VIB
R+o[V]B

(Shape) pB is the shape vector of the array B.

(Ravel) ,B is the vector whose elements are those of B taken by indexing se-
quence (that is, with the last index varying most rapidly). If B is a scalar, ,B is
the vector whose sole element is B. If B is a vector, ,B is identical to B.

(Reshape) ApB is an array of shape ,4 whose elements are taken sequentially
from,Brepeated cyclically as required. A must be a nonnegative integer scalar
or vector, or an empty vector. (10)pB is the scalar (,B)[1].

Reversed Bisanarray identical to Bexcept that the elements along the last axis
are in reversed order. If B is a vector, then ® B turns B end for end.

The function© isidenticalto® except that the relevant axis is the first, not the
last.

The axis operator (see Operators) can be applied to either or © to designate
the relevant axis.

66

R<ADB
R+<AeB

R+A,B
R+<A,[V1B

R<AD[VIB
R+Ae[V]B (Rotate) If A is an integer scalar or one-element vector and B is a vector, then

Chapter 6

A Bis a vector identical to B except that if 4 >0 then the elements of B have
been rotated cyclically left A places. If A <0 the rotation is to the right |4
places.

For higher dimensional arrays the shape of 4 must be ~ 11pB and then each
element of A specifies the amount to rotate the corresponding vector along the
last axis of B.

For example,

B
E
L

‘-1,0

D A
G H
J K

As in the monadic case, the function© is identical tod except that the relevant

axis is the first, not the last. The axis operator (see Operators) can be applied to
either® ore to designate the relevant axis.

(Catenate) This function is used for gluing together two arrays to form a larger
array.

If A and B are vectors (or scalars), A, B is the vector whose elements are those
of A followed by those of B.

Matrices are catenated along the last axis of each by imagining them to be writ-
ten side by side and then glued together along the adjacent sides. (The last axis
is the one which is extended.) Obviously only the first dimension of each must
match.

The same idea extends to higher dimensional arrays. For example, a 3X4X5
array may be catenated to a 3X4X2 array of the same type to form a 3X4X7
array.

68

R<AQB

R<QB

R+A[B;C:;..

Chapter 6

(Dyadic Transpose) This function provides a way of permuting the axes of an
array (and also of obtaining diagonal sections of an array).

Suppose B is a 3-dimensional array and we wish to form from it the
3-dimensional array R such that R[[;J;K]=B[K;I;J] for all values of K, Tand J
that are valid subscripts for B. In APL thisisexpressed R<3 12 QB. Theleft
argument of ® is found by inspecting the subscripts K;I;J of B in the equation
defining R[/;J;K]. The first subscript of B, i.e., K, is the 3rd subscript of R, the
second, I, is the first of R and the third, J, is the second of R. Hence 3 1 2.

We can also take a “"diagonal section’’ through an array. For example, we can
derive from B a 2-dimensional array S such that S[[;J]=B[J;I;J]. In APL this
is <2 129B. The rule for finding the left argument is the same as above.

If Bisamatrixthen2 1 QBisthe conventional transposeof Band 1 1 QBisthe
main diagonal.

(Transpose) This function reverses the order of the axes of its argument. For-
mally, @B «= ($4ppB) QB. In particular, if Bis a matrix then QB is the con-
ventional transpose of B.

D]

(Indexing) Elements may be selected from an array A to form a new array R by
means of an index expression in square brackets. An index expression for an n-
dimensional array A is a list of n expressions separated by semicolons. The
value of each expression must be an array (e.g., B) each of those elements is a
permissible index along the corresponding axis of A. Each indexing array may
be of any rank, although scalars and vectors are the most common.

Any of the constituent expressions of an index expression may be omitted en-
tirely; its value is taken to be the entire index vector for that axis of A.

The shape of R is the catenation of the shapes of the indexing arrays. In par-
ticular if A is a vector then the shape of A[B] is the shape of B. Technically, for
higher rank index arrays,

A[B;C;...;D] « = ((pB),(pC),...,(eD))pAI(,B);(,C);...;(,D)]

The use of a pair of symbols, [and] and what amounts to a vector of arrays as
one of its arguments, distinguishes indexing as an exception to the A PL syntax
rules. Nevertheless indexing is still conceptually a dyadic function of an array
and an index.

70 Chapter 6

The following diagram summarizes these cases.

pad B take |4 elements take A elements pad B
on left e from end of B) from beginning of B on right oy
-

“pB 0 pB A

If Bis of higher rank then each of the axes is treated as in the vector case, using
the corresponding element of A.

R+AlB (Drop)This function is a variant of take. It also selects a “"corner’’ of the array
B but it does it by deleting rows and columns rather than by keeping them.

The conditions on A and B are the same as for take.
If B is a vector there are four cases as illustrated in the following diagram.

drop all drop |A elements drop A elements drop all
of B " from end of B . from beginning of B of B

— T

>
pB 0 pB A

If Bis of higher rank then each of the axes is treated as in the vector case, using
the corresponding element of A.

R+<A/B

R+A-+B

R+A/[VIB

R+ A-+[V]B (Compress) This function provides selection based on a boolean vector A of
I'sand 0's.

B may be any array and A is a boolean scalar or vector, or an empty vector.

A scalar or one element vector A is extended to conform to B and a scalar B is
extended to a vector conforming to A.

The number of elements of A4 (after extension) must equal the length of the last
axis of B (after extension).

If B is a vector, the A/B is the vector consisting of those elements of B cor-
respondingtothe 1'sin A. It follows that the length of A/Bis thenumberof 1’s
in A.

If B is of higher rank, then the compression is applied to the vectors along its
last axis.

PRIMITIVE FUNCTIONS AND OPERATIONS 71

R+ANB
R+A>

A+Bisidentical to.A/B except that the compression is applied to the first axis,
not the last.

The axis operator (see Operators) can be applied to either / or -+ to designate
the relevant axis.

R+AN[VIB
R+ A><[V]B(Expand) This function opens out the array B by inserting zeros (or blanks)

based on the boolean vector A. It is a partial inverse to compression in the
sense that A/AN\B +~— B,

B may be any array and A is a boolean scalar or vector, or an empty vector.
A scalar B is extended to a vector of length equal to the number of 1’s in A.

The number of 1's in A must equal the length of the last axis of B (after exten-
sion).

If Bisavector, then A \ Bisthe vector whose length is that of 4 and consisting
of the elements of B placed in order wherever A has 1's and zeros (or blanks)

wherever A has 0's.

If Bis of higher rank then the expansion is applied to the vectors along its last
axis.

A->cBisidentical to A \ B except that the expansion is applied to the first axis
instead of the last.

The axis operator (see Operators) can be applied to either \ or >« to designate
the relevant axis.

(Index generator) (B is a vector of B consecutive ascending integers, the first of
which is the current index origin.

B must be a nonnegative integer scalar or other one element array.

0 is a common expression yielding an empty numeric vector.

72

R+AB

R+AeB

R-AB

R+VB

Chapter 6
(Index of) A:B is a ""search’’ function which finds the first occurrence in 4 of
each element of B.
A can be any vector. B can be any array. AuB has the same shape as B.
If Bis a scalar then AB is the index (relative to the current index origin) of the
first occurrence of Bin A. If B doesn’t occur in A at all, then AB is IO +pA

(i.e., the first index beyond the range of A4).

If Bisan array of higher rank then each element of AiBistheleastindexin 4 of
the corresponding element of B.

This function is obviously index origin dependent.

The equality test implied in this function uses the comparison tolerance for
numeric arguments.

(Member of) A and B can be any arrays. AeB is a boolean array the same shape
as A. Each element of AeB is 1 if the corresponding element of A occurs any-

where in B, and 0 otherwise.

The equality test implied in this function uses the comparison tolerance for
numeric arguments.

(Grade up) A ""sorting” function. B may be any numeric vector. A B has the
same shape as B.

A B is the permutation of 1pB such that B[4 B] is in nondecreasing order. The
indices of any set of identical elements of B occur in A B in ascending order.

Since tpB is index origin dependent, so is 4 B. Comparison tolerance is not
used in the comparisons.

(Grade down) B may be any numeric vector. ¥ B has the same shape as B.

¥ B is the permutation of pB such that B[{ B] is in nonascending order. The
indices of any set of identical elements of B occur in ¥ B in ascending order.

Since 1pB is index origin dependent, so is ¥ B. Comparison tolerance is not
used in the comparisons.

76 Chapter 6

R+<A¥B (Dyadic format) This function is similar in purpose to monadic format, but it
uses variations in the left argument to provide progressively more detailed
control over the result.

B may be any numeric array. A is an integer scalar or vector.

In general a pair of numbers is used to control the result. The first determines
the total width of a number field and the second controls the precision.

If the precision indicator is negative then E-format is used and the magnitude
of the precision indicator is the number of digits in the multiplier. If the preci-
sion indicator is nonnegative then regular decimal form is used and the value
of the indicator specifies the number of digits to the right of the decimal point.

If the width indicator is zero, a field width is chosen such that at least one space
will be’left between adjacent numbers.

If A is a scalar or a one element vector it is treated like a number pair with a
width indicator of zero.

If A is a two element vector, it provides the width and precision for the entire
array B.

Otherwise A must be a vector with a pair of elements (width, precision) for
each index along the last axis of B.

-Operators

Operators in APL provide a means of modifying some of the primitive functions or of
creating whole families of new functions.

Although in many contexts the terms *’function’” and “‘operator’’ are used more or less
synonymously, in APL they have quite distinct meanings. *Function” is used for things
such as + or & which take arrays as arguments and produce arrays as results. “"Operator’’ is
used for a special kind of function which takes functions and/or arrays as arguments and
produces a derived function as a result.

Reduction, scan, inner product, outer product and axis are the five operators available in
MicroAPL.

PRIMITIVE FUNCTIONS AND OPERATIONS 77

R+~f{/B

R+~f{+B

R+f{/[VIB

R+f+[V]B (Reduction) NOTE: The symbol for the reduction operator is /. f/ is the
mixed monadic function derived by applying reduction to any scalar dyadic
primitive function f. R+ {/B is the syntax of the derived function.
The definition of {/B is as follows.

(a) If Bis ascalar, f{/B+~—B.

(b) If Bis a 0-element vector, then f/B is the "identity element’’ for f, as
shown in Table A.3. If no identity element exists adomain error is evoked.

(c) If Bis a 1-element vector then /B is the scalar (:0)pB.
(d) If Bisavector of length 2 or more, then {/B «— B[1] f B[2] {...f B[pB].

(e) If Bisanarray of higherrank, the reduction rules (b) - (d) are applied to
the vectors along the last axis of B. The shape of f/Bis™ 1lpB.

f+isidentical to f/ except that the reduction is applied along the first axis in-
stead of the last.

The axis operator can be applied to the derived function f/ or f-+ to designate
the relevant axis.

Some common reductions are

+/ sum of

X/ product of
I/ maximum of
L/ minimum of
N for every'’
v/ "there exists”’

#/ parity check

78

R<f\B
R+f>B
R+<f\[V]B
R<f><[V]B

R+f{/[V]B
R—{+[VIB
R<f\[V]B
R—f>[VB
R«-o[VIB

R-®[VIB

R-AD[VB
R-A/[VIB

Chapter 6

(Scan) NOTE: The symbol for the scan operator is \. f\ is the mixed
monadic function derived by applying scan to any scalar dyadic primitive
function f. R+« f\ B is the syntax of the derived function.

The definition of £\ B is as follows.

(a) If B is a scalar or a 0-element vector, f\B +~— B,

(b) If Bisavector of length 1 ormore then for everyscalar feipB, (f \ B)[[] +—
f/B[d].

(c) If Bis an array of higher rank, the scan rules (a) and (b) are applied to the
vectors along the last axis of B,

Theshape of f \ Bisthe shape of B. f-+isidentical to f \ exceptthatthescanis
applied along the first axis instead of the last.

The axis operator can be applied to the derived function f \ or f> to designate
the relevant axis.

R<AN[V]B

R<A,[V]B

(Axis) The axis operator, designated by the pair of symbols [and] , takes an
axis value ¥and modifies the function to the left, usually by designating a rele-
vant axis of one of its arguments.

In all cases V' must be a numeric scalar or 1-element vector.

Since axes are numbered relative to the current index origin, the axis value Vis
origin dependent.

PRIMITIVE FUNCTIONS AND OPERATIONS 79

R+Af.gB

R+<A°.gB

(Inner product) Inner product derives a new dyadic mixed function f.g from
any two dyadic scalar primitive functions f and g.

If A and B are vectors of the same length, or they are both scalars, then Af.gB
«— f/AgB.

In general, if A and B are arrays other than scalars, and (" 11pA4) = (11pB),
then theshape of Af.gBis (" 1pA),(11pB)and (Af.gB) [[;...;J;:L;...; M)« —
f /A[L...;0;) g B[;L;...;M) for all valid sets of indices.

Finally if either one of A or Bis ascalar, orif either is a 1-element vector, it is
reshaped into a vector whose length satisfies the general case above.

The inner product +.X is the ordinary ““matrix product.”” Other common in-
ner productsare A.=, +.=, L.+ ,l.4+ ,and X.*,

(Outer product) Outer product derives a new dyadic mixed functione.g froma
dyadic scalar primitive function g.

Theshapeof 4 .gBis (pA),(pB) and (A°.gB)[I;...;J;L;...;M] = A[[;...;J]1 g
B[L;...;M] for all valid sets of indices. (If A or B is a scalar, the index expres-
sion is omitted.)

80

Chapter 7

System Variables and System Functions

System variables and system functions provide facilities for communicating with the APL
System. Unlike system commands they can be used within APL expressions.

System names are distinguished: they all start with (J or (.
System variables and functions are always in your workspace, but they do not appear in
)FNS and) VARS lists. They cannot (and need not) be copied or erased. Some of them can

usefully be localized in function definitions: (JJO is the most common example.

The difference between system variables and system functions is mainly a matter of their
syntax.

System Variables

System variables are best viewed as variables which you share with the APL system. You
can’t do anything to or with a system variable without the system taking some notice.

When you use a system variable in an expression the system generates and supplies the
value. For example (JWA returns the working area available, but the system has to do a
storage reorganization and cleanup to get that value.

82

orc

ars

OwA

Chapter 7

Terminal control. An 8 element character vector whose elements have the
following effects when output to the screen.

orcn) move cursor left
arcr2) move cursor right
T3] move cursor down
OTcr4) move cursor up
Orcrs) clear screen and home cursor
arcie) home cursor to top left hand corner
orcm RETURN ("’ new line"’)
arcis) Erase to end of line
OTC cannot be altered.

Timestamp. Used for setting and reading the internal system clock. A six ele-
ment integer vector representing the date and time as follows:

arsq) Last two digits only of the year

arTs(2] Month (1 through 12)

OT7s[3] Day (1 through 31, consistent with month and year)
O7s[4) Hour (0 through 23)

aTs(s] Minute (0 through 59)

arsie] Second (0 through 59)

Acceptable values: representations of valid dates and times in the above for-
mat.

[OJTS may be set at any time. The system will then keep its clock up to date.
The system clock is not kept in the workspace, so loading a new workspace
does not affect it.

Working area. Available space in the active workspace in bytes. (1WA cannot
be changed by assigning it a value.

Evaluated Input/Formatted Output. When [J is assigned a value, the system
displays a representation of the value on the screen. CJPPand CJPW affect the
display. A vector which cannot be displayed within the printing width is con-
tinued, indented on subsequent lines. Rows of a matrix are displayed as
separate vectors. One line is skipped between the matrices of a 3-dimensional
array, two lines between 3-dimensional subarrays and so on. E format is used
automatically when necessary for numeric arrays.

SYSTEM VARIABLES AND SYSTEM FUNCTIONS 83

When a value for O is required, the system generates its value by obtaining it
from the user: a prompt (CJ:) is displayed and the user must enter an expression
to be evaluated, or — (see "’Punt’’). The value of the expression is the value of
0.

Character Input/Bare Output. When [is assigned a character scalar or vector
value, the system sends the characters to the screen in a continuous stream
without gratuitous newline characters. This is useful and often necessary when
you wish to display long strings containing cursor positioning characters (see
arc).

When a value for [is required, the system generates the value as it does for
[except that (a) there is no prompt: the cursor simply remains where it is, and
(b) the input is taken as a vector of characters and is not evaluated. Trailing
blanks are trimmed off and the result is always a (character) vector.

Program function key 2 (i.e., shifted '’2"" on the numeric keypad), as a
response to [0 or [J input, is equivalent to a ""punt.”’

NOTE: Because a machine awaiting character input looks just the same as a
machine locked in a long calculation (the cursor is at the left margin), it is good
practice to include your own prompt in your programs. [J output followed
directly by [0 input is a neat way of doing this on one screen line.

System Functions

OCR F

ODL §

OEX A

Canonical representation. F is a character vector (or scalar) naming a func-
tion. The result is a character matrix containing a representation of the func-
tion. The representation is similar to that displayed by the ¥ — editor, but
without V' s or line numbers. The result is of shape 0 0 if F does not denote an
existing function.

Delay. S is a positive integer scalar. This function takes S seconds to complete.
The result is the length of the delay, namely S.

Expunge. A4 is a character scalar, vector or matrix. Any variables or functions
named by the rows of A are erased, if possible. The explicit result is a boolean
vector whose I' thelement is 1 if the I’ throw of A denotes a name which 1s now
available for use. whether or not an object by that name was erased.

OFX M

ONC A

ONL K

LONLK

OSTOP F

Chapter 7

Fix. Mis a character matrix representing a function definition in the same for-
mat as the result of CJCR. CJF.X establishes the definition if possible. The ex-
plicit result is a character vector naming the function established, or else the in-
dex (relative to the current index origin) of the first row of M containing a fault
which prevented establishment. The name of the intended function cannot be
in use, except as a function name.

Name classification. A is a character scalar, vector or matrix. The result is a
vector of name classifications giving the usage of the character sequences in
ecachrowof A

: a name available for usage

: alabel

: avariable name

: adefined function name

: other (a distinguished name, or not a name)

W=

Name list. K is anumeric scalar or vector with elements 1, 2or 3. Theresultisa
character matrix whose rows name the objects in the indicated classes which
exist in the active workspace: 1, 2 or 3 for labels, variables or functions, respec-
tively.

Name list. L is a character vector or scalar. The result is like that of monadic
[CINL but the list contains only names beginning with one of the letters in L.

Fis a character (scalar or) vector naming a function. The result is an integer
vector of line numbers on which “’stops’’ have been placed.

NOSTOPF

F is a character (scalar or) vector naming a function. N is a vector of line
numbers. ’Stops’’ are set on the lines of the named function whose numbers
appear in N (See Stop Control for the effect of a stop). An empty vector N
removes all stops. Editing a function removes all its stops.

NOTRACEF
OTRACE F Similar to COJSTOP but for “traces” instead of "'stops.””

COLOAD W W is a character vector naming a workspace. JLOAD is identical to)LOAD
but it may be executed as an APL statement.

SYSTEM VARIABLES AND SYSTEM FUNCTIONS 85

OPEEK V

Vis either (a), a scalar or vector of integers defining machine addresses, or (b),
a 2-column matrix of integers whose rows define ranges of machine addresses.
The ranges are inclusive.

The result is a character vector (i.e., of elements of [J4 V) containing the
current contents of the machine addresses defined by V.

N.B. The machine addresses are interpreted as in origin 0, regardless of the
current index origin.

Examples
(1) OPEEK 0is the current contents of hexadecimal location 0000. The only
reliable way to "’see’’ the value is to look it up in A V: OAVIOOPEEK 0 pro-

duces an integer result in the current index origin.

(2) OPEEK 32768 32769 is the contents of the first 2 locations on the screen
(Hexadecimal 8000-8001).

(3) OPEEK 12 p32768+0 1999 is the entire screen. (Hex 8000 - 87CF).

COPOKEV

osysc
AQOsyscC

V is a scalar, vector or range matrix, as in JPEEK. C is a character vector
whose length is consistent with V. A scalar Cis extended to be consistent with
V.

Example AV OPOKE 1 2p32768+0 255 will show the result of storing all
possible byte values into screen memory.

NOTE: It is sometimes important to know that the assignment of bytes to ad;
dresses occurs “'from left to right’’ in OPOKE.

Execute 6809 machine code. The machine code (i.e., instructions) contained
in, or pointed to by, C is executed.

Cis either

(1) ascalar or one element vector integer between 0 and 65535, representing
the machine address at which execution is to begin, or

(2) acharacter (scalar or) vector of bytes to execute directly.

Control is returned to APL by executing a 6809 RTS instruction.

86

OXR C

OIRC

Chapter 7

The explicit result of CJSYS is an integer scalar representing the value of the
6809 D register at the time of returning.

A is an optional parameter list. If present it must be a (scalar or) vector of in-
tegers between 0 and 65535. The two-byte value represented by the first ele-
ment of A is placed in the 6809 D register before execution begins, and the re-
maining elements are placed on the stack (two stack bytes for each element).
The top pair of bytes on the stack contain the return address (i.e., of APL’s
[JSYS handler). The second pair correspond to A[2], the third pair to A[3] and
so on. In each pair the low order byte is stacked first.

The stack may be used by the machine language routine, but it must beleft in
this same condition again when the RTS instruction is executed to return to
APL.

External representation. Translates A PL characters to *’APL-ASCII Overlay
(Typewriter-Pairing)”" representation. C is a (scalar or) vector of APL
characters or elements of (J7TC. The result is a character vector formed by
catenating the representations of the elements of C according to the APL-
ASCII typewriter pairing convention (see appendix). Overstruck elements of
C are expanded into the two constituent characters separated by a backspace
character.

Internal representation. CJIR and [1XR are strict inverses except that 1R will
handle either of the two possible permutations corresponding to the
overstruck symbols.

There are more system functions in MicroAPL. These all concern files and are included in
a subsequent chapter.

87

Chapter 8

Errors

If an error is detected in the execution of a statement, an error report is displayed. This
report consists of an error message followed by a display of the statement. The point at
which execution was interrupted is marked by a caret (A). Any implicit results, such as
variables having been assigned values, which occurred before the point of error, remain in
effect.

Error Messages

SYNTAX ERROR
A line of APL characters is not a valid statement.

VALUE ERROR
An expression with no value occurs in a context requiring a value. The use of a
variable before it has been assigned a value is a common cause of this error.

DOMAIN ERROR
The argument or arguments of a primitive function are not within its domain
of definition. Generally speaking, RANK and LENGTH errors are recognized
first if possible.

88 Chapter 8

RANK ERROR
The rank of an argument of a function does not meet the requirements of the
function, or the ranks of the left and right arguments do not conform.

LENGTH ERROR
The argument ranks conform, but the sizes of one or more axes do not.

INDEX ERROR
(1) The value of an index expression is an invalid index for the associated ar-
ray. (2) An invalid axis number is specified in an axis operator.

CHAR ERROR
Certain keys are invalid in APL and evoke a character error report when
struck.

SYMBOL TABLE FULL
Too many names have been used. Save the workspace; clear and copy the en-
tire workspace. (The symbol table size may be changed in a clear workspace
with the)SYMBOLS command.)

WS FULL
Out of memory. Clear the state indicator by executing — sufficiently many
times. Erase unnecessary objects.

SYSTEM ERROR
Fault detected in the APL system.

DEFN ERROR
This error is dealt with in the chapter on defined functions.

89

Chapter 9

Files

A file in the APL system is viewed as a collection of items external to the APL workspace.
These files can be created, added to, retrieved from, erased and renamed through the use of
special APL system functions.

There are four types of files:

a) APL-sequential

b) BARE-sequential

c) Relative

d) Program
An APL-sequential file is simply a sequence of APL values of any shape, rank and type.
A BARE-sequential file is a sequence of 8-bit binary characters.

A Relative file is a sequence of 8-bit binary characters which are organized into fixed sized
groups called ‘records’ which may be accessed in random order.

A Program file is a special kind of BARE-sequential file normally used to contain pro-

grams and workspaces. As such, it is not usually accessed with the techniques discussed in
this chapter.

90 Chapter 9

General Concepts:

Files reside on some external medium and are identified by a name. Filenames are con- °

structed according to specific rules described below.

In order for the data in a file to be available to a workspace, it must be ""tied”’ to the
workspace with a tie-number. Information is transferred to and from the file using this
number. When access is not required by the workspace, the file can be ""untied.”

Filenames:

The filenames of A PL-sequential and BARE-sequential files are composed of any combina-
tion of letters and numbers (see Systems Overview Manual) (e.g., the name of a disk file can
contain up to 15 characters). The following are valid filenames for sequential files:

GEORGE
INVENTORY.NOV
SALES004

The filenames of Relative files are somewhat more detailed than those of sequential files.
The basic filename is formed by following the same rules as above. However, special addi-
tions are also required in the name. The meaning of the special sequences are described later
in the section titled "'Relative Files.”” The following are valid names for Relative files:

V~(45AGEORGE,REL
V~(80AINVENTORY.NOV,REL
V ~ (200ASALES004,REL

Replies:

The file operations described in the rest of this chapter frequently return replies which
reflect the result of the operation. The reply is in the form of a character vector which con-
tains text describing any abnormal condition encountered. If the operation was successful,
the reply is an empty vector.

FILES 91

General File Manipulation Functions:

REPLY «~ FNOCREATEN

FNisacharacter vector containing the name of a file which is to be created. If a
file with the same name already exists, it is replaced. The argument N is an in-
teger scalar specifying the “"tie-number’’ to be used. Output operations such as
COWRITE or OPUT are valid.

REPLY « FNOTIEN

This function is used to access an existing file. The file specified by FN is
located and attached to the workspace with the tie-number given by the integer
scalar N. Only input operations such as CJREAD or [JGET are valid on a file
accessed in this manner,

REPLY «~ FNUOAPPEND N

This function is used to add items of data to an existing sequential file. The file
specified by FN is located and attached to the workspace with the tie-number
defined by the integer scalar N. Only output operations such as OWRITE or
OPUT are valid here.

REPLY « FNUOUPDATEN
This function is used to access existing relative files. FN specifies a file which is
located and attached to the workspace with tie number N. Data can be sent to
and retrieved from the file using the functions OREAD, OOGET, OWRITE
and OJPUT.

OUNTIEN

The argument N is an integer vector containing tie-numbers of files to be
released from the workspace.

92 Chapter 9

REPLY + FNUOERASEN

The file named in FN is erased. N is an integer scalar representing the tie-
number of the currently tied file to be erased.

REPLY + FNORENAMEN

The argument N is an integer scalar specifying a currently tied file. This file is
renamed to the name defined in the argument FN.

ONUMS
This function returns a vector of all currently active tie-numbers. Their order
corresponds to that of the filenames returned by the function ONAMES.
ONAMES
This function returns a character array of the names of all currently tied files.
Their order corresponds to that of the tie-numbers returned by the function
ONUMS.
REPLY + OOSTATUS N

The argument N is an integer scalar representing a file tie-number. The func-
tion response reflects the status of the most recent operation performed on the
file with the specified tie-number.

Z+[LIB L Lisacharacter vector designating a device (e.g., ‘DISK/1°), or an empty vec-
tor. Z is a character matrix representing the directory for the device. (ASCII
characters are not necessarily translated to APL.)

APL Sequential Files

APL-sequential files are a sequence of APL values of any shape, rank or type. Such files are

accessed using OCREATE, OOTIE, OAPPEND and COUNTIE. Values are written into the

file using OWRITE and read back into the workspace using OREAD.

REPLY «~ ZUOWRITEN

Zisany APL variable and Nis an integer scalar. The rank, shape and type of Z
as well as all of its data are put on the file tied with number N.

FILES 93

Z <~ 0OREADN

The 'next’ item in the file tied with number N is read into the workspace and
assigned to the variable Z. The variable assumes the shape, rank and type of
the data value from the file.

BARE-Sequential Files

BARE-sequential files are a sequence of 8-bit binary values (called bytes). These files are ac-
cessed using JCREATE, OTIE, OAPPEND and CJUNTIE. Bytes are written to the file
from APL character variables using JPUT and read back into the workspace using JGET.

REPLY «+ ZOPUTN

The argument Z is a character vector and N is an integer scalar representing a
tienumber. Character data from the specified vector is written to the file. Each
byte from the item is transmitted to the file and no additional bytes are added.

Z +« OGETNL
NLis a2-elementinteger vector. The first element contains the tie-numberof a
currently tied file. Character data from the file is transmitted to the workspace
and stored in Z as a character vector. The number of bytes transmitted is
specified by the second element of NL. If there are too few bytes left in the file,
only those available will be transmitted.

Relative Files

A relative file is composed of "‘records,’” each of a fixed size. The record size is defined as
part of the filename when the file is created (using (JCREATE). This is done by prefixing the
name with the sequence vV ~ (NNA where NN is the desired record length. The name must
also be suffixed by the sequence ,REL. (The cryptic sequence is the A PL equivalent of the
ASCII codes required by the disk system.)

€.8., to create arelative file named SAMPLES with records of length 100, use
the filename

V~(100ASAMPLES,REL
Relative files are accessed using OCREATE, OTIE, OUPDATE and CJUNTIE. Opera-

tions on relative files are performed on individual records, so OGET and COPUT must be
preceded by the (JSEEK operation positioning the file-system to a specific record.

94 Chapter 9

REPLY « OSEEK NL

NL is a 2-element integer vector. The first element is the tie-number of a cur-
rently tied relative file. The file system positions its *’current-record’’ pointer
to the I'th record in the file where I is specified by the second element of the
vector NL. If the record does not exist, a reply is returned to that effect. This
reply can usually be ignored when the file is being written.

NOTES:

1 An attempt to write more characters than will fit on a record will result in an I/0
ERROR.

2 An attempt to read more characters than are on one record will cause characters to

be read from the next record.

3 The maximum record length in a relative file is 254 bytes.

95

Appendix A

Tables of Functions

Table A.1 - Primitive Monadic Scalar Functions

Symbol

® % 0

Name

Conjugate
or identity
Negative
Signum

Reciprocal

Floor

Ceiling
Exponential
Natural logarithm

Magnitude or
absolute value
Factorial

Definition or Example

+B «— 0+B

—B «~— 0-B

XB «— " 1if B<0
0 B=0
1 B>0

+B += 1+B

13.147 3.14 <> 3" 4

M3.147 3.14 <=4 3

*B <= (2.7128...)%*B «— ¢e*B
®B «— ¢®B

3.14 73.14 «— 3.14 3.14
§0+~—1
§B «~— BX&(B-1)

Page

62
62
62

62

62
62
62
62

62
62

96 Appendix A I
Symbol Name Definition or Example Page I
? Roll 7B +—— Random choice from (B 63
O Pi times OB +— BX3.14159... 62
~ Not ~01+=10 63 I
Table A.2 - Primitive Dyadic Scalar Functions
Symbol Name Definition or Example Page I
+ Plus 2432 +-—52 63
- Minus 2-32+=-"12 63 l
X Times 2X3.2+— 64 63
- Divide 2+3.2 «= 0.625 63
L Minimum 37 +~—3 63
r Maximum 3 =7 63
* Power 2%3 «— § 64
® Logarithm A®B «— Log B (base A) 64
A®B +— (8B)+8A I
| Residue A|B+<— B ifA=0 64
A|B +— B—AXLB+A if A#0
: Binomial ASB «— (§B)+(§A)X$B—-A 64 I
coefficient 265210 345<—10 64
A B ANB AVB AAB AwB
A And 00 0 0 1 1 64
\' Or 01 0 1 1 0 64
A Nand 1 0 0 1 1 0 64
A Nor 1:1 1 1 0 0 64 I
< Less 64
< Not greater Result is 1 if the 64 I
- Equal relation holds, 0 64
= Not less if it does not: 64
> Greater 3T =1 'A'#3 =] 64
+# Not equal 7s3+—=0 'B'='B'«-1] 64 l
o Trigonometric Restrictions I
A R+~ACB Domain Range
7 tanh B I
6 cosh B

TABLES OF FUNCTIONS

>

R+<ACB

sinh B
(1+B*2)* .5
tan B

cos B

sin B
(1-B*2)*.5
arcsin B
arccos B
arctan B
(1+B*2)* .5
arcsinh B
arccosh B
arctanh B

‘*»lIO\l'JII-h-IhJNI—IO_NNbM

The angular measure is radians.

Domain Range

B=l1
(1B)=1

(1B)=1
1<|B

1=B
(B<1

0=R

0=R
(|[R)=0+2
(0=R)A(R=01)
(|R)<0+2
0<R

0=R

Table A.3 - Identity Elements of Dyadic Scalar Functions
(see Reduction)

DYADIC SCALAR FUNCTION

VN INALP<>"O0®*—r—— | X | +

IDENTITY ELEMENT

O m =00

The largest representable number.
Greatest (in magnitude) negative no.
1
None
None
1
1
0
None
None

OO e e =D

97

98 Appendix A

A.4 - Table of Mixed Primitive Functions

In the following table the ""syntax’’ column indicates the highest rank of the arguments. S
: scalar; V : vector; M : matrix; A : any array. Generally, lower rank arguments are accep-
table.

Arrays used in the examples:

Ne«=234p12«<=>1 2 3 4
5 6 7 8
9 10 11 12
C «— 3 2p"ABCDEF +— AB
CcD
EF

Syntax Name Examples Notes Page

pA Shape pC+—32 65
p2357 «— 4
p1 +— <empty vector>

VpA Reshape 34p12 «—> N 65
4pC +~— "ABCD’
0p2 3 7 «+— <empty vector>
(0)pC «— "A’

,A Ravel SN == 12 65
o1 == 1p7

bA Reverse bC - BA 1 65
DC
FE
$[1]C «— EF
cD
AB
$2357<-27532

AdA Rotate 19’ WORDS' «— 'SWORD' 1 66
12b[1]C «~— CF
EB
AD

TABLES OF FUNCTIONS 929
Syntax Name Examples Notes Page
AA Catenate 34721+-34721 1 66
C,'XYZ' «— ABX
CcDY
EFZ
A,[V1IA Laminate 'CAT,[0.51'DOG’' +— CAT 1 67
DOG
'CAT,[1.5]'DOG" «— CD
AO
TG
VyeAd Dyadic p3128Q(235030) «<—352 2 68

Transpose 11 QN+«—=+1611

QA Transpose QC +— ACE 68
BDF

VtA Take 21357 =57 69
41234+<-2340
211C+«— A
C

ViA Drop 2V'EXAMPLE' +—- 'AMPLE’ 70
TH357«—=35
T2 HC = 1 1p'A

V/A Compress 101/235+«—+25 1 70
011/[1]C «—= CD
EF
V\A Expand 110N57«=570 1 71
10INC+—AB
cD
EF
ViA] Indexing 'EXAMPLE’[4 3 5] «— '"MAP' 2 68
M[A;A] 'ABCDEFGHIJKL'[N]+—ABCD
AlA;...;A) EFGH
IJKL
C[32;) «— EF
CD

100 Appendix A
Syntax Name Examples Notes Page
AlA;..;A1+A
Indexed Cll;]«<'PQ'"—— C+— PQ 2 69
assignment cD
EF
S Index 3e<—123 2 71

generator 10— <empty vector>

ViA Index of 'ABCD"/'C' +~— 3 2,3 72
‘SOUS'/'CS' +— 51
‘ABCD''\C+—12
34
55
AeA Memberof ‘CATe«C+—110 3 72
Ce'CABBAGE’ «+— 11
10
10
AV Gradeup A6862+—4132 2 72
6862[A6862]<—2668
\ A4 Grade down §5316+—4123 2 72
5316[y5316]<—6531
S8 Deal 375+-2341 73
375 «—145
BM Matrix B22p1101<-1"1 73
inverse 01
30XB125«—125
B5+—0.2
MBEM Matrix 25682201101<—>" 35 73
divide
AlA Decode 10L1867+—1867 74
246060L15 50 10<—57010

TABLES OF FUNCTIONS 101
Syntax Name Examples Notes Page
ATA Encode (8p2)T13+=00001101 74
24 60 60T56999+—15 49 59
sV Execute 2344 «= 7 75
4'C'~— AB
CD
EF
TA Format pFN<—-312 75
¥57 12«57 12
FC+—C
ViA Dyadic 52¥(+=123)«~-—"1.000.500.33" 76
format 97 4F(=7)——"1.429E" 01"
42%(+3 1p3)«— 1.00
0.50
0.33
NOTES:
1 Axis operator is allowed. (Axis is always index origin dependent.)
2 Index origin dependent.
3 Comparison tolerance dependent.

102

Appendix B

System Commands, Variables and Functions

B@®] -System Commands

JLIB
JCLEAR
YWSID
)SAVE
JLOAD
)COPY
JDROP
)FNS
JVARS
)JERASE
)SI
)SINL
JOFF

)SYMBOLS
YWSLIMIT

Report names of saved ws’s and files
Activate a clear ws

Change or report wsid

Save a copy of the active ws

Load a copy of a saved ws

Copy named objects from a saved ws
Erase a saved ws

Report names of functions in active ws
Report names of variables in active ws
Erase functions or variables in active ws
Display state indicator

Display state indicator and local names
Discontinue APL

Report or change symbol table size
Report or change limit of memory used for ws

Page

-9
[

S RRRRRROSOOED

l SYSTEM COMMANDS, VARIABLES AND FUNCTIONS 103
l B®2-System Variables Page
0Av Atomic vector 81
Ocr Comparison tolerance 81
l Oro Index origin 81
OLc Line counter 81
OLx Latent expression 81
OoprpP Printing precision 81
opPw Printing width 81
ORL Random link 81
aorc Terminal control 82
l ars Timestamp 82
OwA Working area 82
O Evaluated input; formatted output 82
I (] Character input; bare output 83
B @3—System Functions (Non-files) Page
I COCR Canonical representation 83
ODL Delay 83
OEX Expunge (erase) 83
l OFx Fix (establish) a function 84
ONC Name classification for given list 84
ONL Name list for given classification 84
I OPEEK Read bytes from memory 85
OPOKE Write bytes into memory 85
l sys Execute machine code 85
OTRACE Change or report trace settings 84
asTop Change or report stop settings 84
' OIR Translate to internal representation 86
OXR Translate to external representation 86
l B®4-System Functions (Files) Page
I COLOAD Load ws 84
OOCREATE Open a file for (re)writing 91
COJAPPEND Open a file for appending 91
l OTIE Open a file for reading 91
OUPDATE Open a relative file for update 91

104

B @4 -System Functions (Files)

OUNTIE
OERASE
ORENAME

OWRITE
OREAD

OpUT
OGET

OSEEK
OSTATUS
ONAMES
ONUMS

OLiB

Close file(s)
Erase a tied file
Rename a file

Write APL array to file
Read APL array from file

Put characters to file
Get characters from file

Adjust position in relative file
Report status of a file
Report names of open files

Report tie numbers of open files

Report names of saved ws’s and files

Appendix B

Page

91
92
92

92
93

93
93

I 105
I Appendix C
l Character Code Tables
I Ce1 - APL-ASCII (Typewrite-Pairing) Overlay
0-* 1—* 2— 3— 4— 5— 6— T—
l —0 NULL ¥ (] - * o P
-1 HOME A 3 1 o ? A Qo
- RUN ¢) 2 1 P B R
I —3 STOP Q < 3 n r c S
—4 DEL e = 4 L ~ D T
—5 INST ® - 5 € { E U
—6 EEOL v > 6 = U F vV
-7 CRFWD I | 7 v W G w
—3 CRBCK ¥ \'; 8 A =’ H X
—9 TAB ¢ A 9 ¢ t I Y
' —A CRDWN + # (° Cc J z
—B CRUP A - [’ - K {
—-C CLEAR (1} , ; O [L -
l =D CR s + X | - M }
—E N 8 . : T = N $
—f A XL~ N o — o RUB
I * NOTE:
These columns contain extensions to the standard A PL-ASCII typewriter-pairing con-
I . vention.

106 Appendix C

Ce2 - TERMINAL Character Set

0— 1— 2— 3— 4— 5— G— T—
—0 NULL 0 @ P ¢ p
—1 HOME ! 1 A Q a q
—2 RUN " 2 B R b r
—3 STOP # 3 C S c s
-3 DEL $ 4 D T d t
—5 INST % 5 E U e u
—6 EEOL & 6 F v f v
—7 CRFWD ¢ 7 G W g w
—8 CRBCK (8 H X h X
—9 TAB) 9 I Y i y
—A CRDWN * : J Z j z
—B CRUP + : K [k {
—C CLEAR . < L AN 1 |
—D CR* - = M] m }
—E > N " n ~
—F m / ? (0] — o RUB

* NOTE:
On output, CR also causes an automatic skip to new-line.

107

A

| o w

l ®<moun

«_. - %o
[74]
3]
-
< @ |
S ¥ - 95983
o 5 AAAAA
8 4

- |

g £ ¢ SEzrs
.Q % NSﬂEE
M <
A SO
s & TTTTT

RDEEZAUNN—/ —<
CEONCE- VR 4
Vi o~ oo sVl A
B w~x + - |
$EE3z3803y
AEPYECTEE
norocand<dmnOAm
O T I I A
Il I =

B M o Noe— o]

B) 2 v v o= B o

RUB

Us

SI

—F

108 Appendix C

C@4 - Internal Character Representation

0— 1— 2— 3 4— 5— 6— 7—
—1 A I (0] Y 5 u (<] {
—3 B J R 4 6 P / 1)
—5 C K S Lo 7 8 -+ ?
-7 D L T 0 8 T N\ ~
—9 E M U 1 9 ¢] +
—B F N | 4 2 4 Q T —
—D G o W 3 A » d 2 X
—F H P X 4 L/ ¢ € *
...cont’d

88— 9 A— B— Cc— D— E— F—
—1 r A #] v v O CRFWD
—3 L N : ° I CRDWN
-5 * A (F O $ CRUP
-7 ® <) - (] — CLEAR
— | =< . w (- - HOME
—B é — ' - D { CR
—D o = [a n } EEOL
—F v >] v A A CRBCK
NOTE
1 Since only odd-numbered entries have meaning, only those are shown here.

